Close to Jamming

  • Glassy behavior starts at \( \phi \approx 0.55 – 0.59 \)

  • Jamming is at \( \phi \approx 0.64 \)

  • What happens if we go really close to jamming?

    • Permanent Caging

    • Floaters

Step Distributions

Close to Jamming:

Glassy:

\( \Delta \phi = \phi_J - \phi = -10^{-3} \)

\( \phi = 0.59 \), \( \Delta \phi = -0.05 \)

Step Distributions

Close to Jamming:

Glassy:

\( \Delta \phi = \phi_J - \phi = -10^{-4} \)

\( \phi = 0.59 \), \( \Delta \phi = -0.05 \)

Step Distributions

Close to Jamming:

Glassy:

\( \Delta \phi = \phi_J - \phi = -10^{-5} \)

\( \phi = 0.59 \), \( \Delta \phi = -0.05 \)

Step Distributions Close to Jamming

Step Distributions Close to Jamming

\( \alpha_2 \)

\( \alpha_2 \)

Back to Glassy Behavior

  • Glassy Behavior

    • How does this scale with N?

    • Can we get larger \( \alpha_2 \) values for smaller N?

    • Fit the step distributions to the sum of two gaussians